ICIP 2006, Atlanta, GA

Slide Show

Atlanta Conv. & Vis. Bureau


My ICIP 2006 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.

Paper Detail

Session:Video Surveillance
Time:Tuesday, October 10, 16:40 - 17:00
Presentation: Lecture
Topic: Other Areas and Applications: Video surveillance
Authors: Wei Qu; University of Illinois at Chicago 
 Dan Schonfeld; University of Illinois at Chicago 
Abstract: Although more efficient in computation compared to other tracking approaches such as particle filtering, the kernel-based tracking suffers from the well-known ``singularity" problem which makes the tracking unstable and even completely fail. In this paper, we propose a novel framework to handle this problem by enhancing the tracker's observability. In particular, we formulate object tracking as an inverse problem, thus unifying the existing kernel-based tracking approaches into a consistent theoretical framework. By exploiting the observability theory, we explicitly give the criterion for kernel design and constraint selection. Moreover, we extend the kernel-based approach by including the state dynamics and thus form a state-space model. The use of observability theory is also extended for dynamics estimation and evaluation. We rely on an optimal observer for state estimation as a solution to video tracking. The performance of the proposed approach has been demonstrated on both synthetic and real-world video data and compared to other kernel-based tracking approaches.